

III Semester B.Sc. Examination, November/December 2014 (N.S.) (Semester Scheme) (2012 – 13 and Onwards) PHYSICS – III

Electricity and Magnetism

rime: 3 Hours Max. Marks: 70

Instruction: Answer five questions from each of Part A, Part B and Part C.

PART – A

Answer **any five** of the following questions. **Each** question carries **eight** marks.

 $(5 \times 8 = 40)$

(1. State and prove super position theorem.

8

- 2. a) Obtain an expression for the torque actino a current loop placed in a magnetic field.
 - b) Mention the conditions for a moving coil galvanometer to be ballistic and dead beat. (6+2)
- 3. Derive an expression for the magnetic field at any point on the axis of a circular loop carrying current.
- 4. State and prove Ampere's circuital law. Obtain an expression for magnetic field due to a long solenoid using Ampere's law.8
- 5. Define self inductance of a coil. Obtain an expression for energy stored in an inductor.8
- 6. a) Define Poynting vector. Write an expression for velocity of e.m. wave in vacuum.
 - b) Show that the electromagnetic waves are transverse in nature. (3+5)

P.T.O.

- 7. a) Define rms and average values of an alternating current.
 - b) Derive an expression for current in an a.c. circuit containing LCR in series.

(2+6)

- 8. a) Distinguish between Peltier and Thomson effects.
 - b) Apply the principles of thermodynamics and arrive at the relation $\pi = T \left[\frac{dE}{dT} \right]$.

(4+4)

()

()

()

()

()

()

PART-B

Solve any five of the following problems. Each problem carries four marks. (5×4=26)

- 9. Two point charges \pm 10 μ C are placed 5 mm apart. Determine the electric field at a point 0.15 m from the mid point of two charges along their axis.
- 10. An electron is projected into a magnetic field of flux density 10 T with a velocity 3×10^7 ms⁻¹ perpendicular to the field. Calculate the magnetic force on the electron and compare it with the weight of the electron.
- 11. A Helmholtz galvanometer has coils of circumference 0.49 m each and the number of turns 50. Calculate the current flowing through the coils, which produce a deflection of 45°. $B_H = 3.6 \times 10^{-5}$ T.
- 12. A coil of 50 turns and area 0.02 m² is kept in a uniform magnetic field of flux density 10⁻² T, so that the flux passes normally through it. Calculate the induced emf in the coil when it is suddenly removed from the field in 0.1S.
- 13. A 10 μ F capacitor is charged and then discharged through a resistance of 10 M Ω . Calculate the time in which the charge on the capacitor decreases to half of its initial value.

- 14. Find the divergence of a vector $\overrightarrow{A} = \hat{i}x^2z + \hat{j} 2y^3z^2 + \hat{k}xy^2z$ at a point (1, -1, 1).
- 15 . A resistance of $^{2}\Omega$ and an inductance of 10 mH are connected in series with an ac source of 50 Hz. Calculate power factor of the circuit.
- 6. Calculate the total emf and neutral temperature of a thermocouple between 0°C and 100°C for which seeback coefficients are

 $a = 10 \mu \text{ V/}^{\circ}\text{C}$ and

 $b = -0.025 \mu V/^{\circ}C^{2}$.

PART-C

Answer any five of the following questions guestion carries two marks.

 $(5 \times 2 = 10)$

- 17. a) An electrical charge is kept near a magnet. Will it experience a force? Explain.
 - b) A solenoid tends to contract when a current is passed through it. Why?
 - c) Why two coils are used in Helmholtz galvanometer instead of single coil?
 - d) Ampere's circuital law is valid only for steady state phenomenon and not for changing fields. Why?
 - e) If the divergence of the vector field is zero, the field is called solenoidal. Explain.
 - f) Can resonance be achieved without changing the supply frequency? Explain.
 - g) When is power delivered to the load maximum?
 - h) Is seeback effect reversible? Explain.

			()
		III Semester B.Sc. Examination, November/December 2014	()
		(O.S.) (Semester Scheme) (Prior to 2012 - 13)	(*)
		PHYSICS - III	(^)
		Electricity, Magnetism and Radiation	()
Tin	ne:	3 Hours Max. Marks	· (:)
		Instruction: Answer any five in Part A, four in Part B and five in Part C	6.
		and the ment of the mir art A, tour mir art B and the mirant	()
		PART – A	()
		~ .	()
Ar	ารพ	er any five questions. Each question (5x6=	:(\ <i>\</i>)
1.	Sta	ate and prove superposition theorem.	() 6
2.	a)	State Biot-Savart's law.	()
	b)	Obtain an expression for the magnetic field due to current in a straight conductor	()
		of finite language	() 2+(1)
			*
3.	a)	State Faraday's laws of electromagnetic induction.	()
	b)	Deduce an expression for induced emf. (2	े भ(1)
	,		()
4.	a)	Starting from Maxwell's equations set up differential equation for	()
		electromagnetic wave.	()
	b)	Establish the relation between electric and magnetic vectors. (4	+_)
			()
			()
			()
			()
			()

6

6

- Obtain an expression for growth of current in L-R circuit. Define time constant of L-R circuit.
- Give the theory of series resonance circuit. Represent the variation of current with frequency.
- 7. a) State and explain the laws of thermoelectricity.
 - b) Applying the laws of thermodynamics to a thermocouple deduce $\pi = T \frac{dE}{dT}$, where the symbols have their usual meaning. (2+4)
- ৪়. State and explain :

- i) Stefan's law
- ii) Stefan-Boltzmann's law
- iii) Wien's displacement law.

6

PART-B

Solve **any four** problems. **Each** problem carries **five** marks.

 $(4 \times 5 = 20)$

9. In the network given below, find the current flowing through R_L using Thevenin's theorem if $R_L = 5\Omega$.

		()
10.	A Helmholtz galvanometer has coils of radius 0.08 m each and number of	()
	turns 100. Calculate the current flowing through the coils which produces a	1 1
	deflection of 50°. Given $B_H = 0.36 \times 10^{-4} \text{ T } \mu_0 = 4\pi \times 10^{-7} \text{Hm}^{-1}$.	· /
		()
11.	A closed coil having 50 turns area 0.03 m^2 and resistance 50Ω is held at right	()
	angles to uniform field of 0.02 T is turned through an angle of 30° in 0.1S about	(····)
	an axis right angle to the field. Calculate induced current and charge.	()
		()
12.	A capacitor of capacitance $1\mu\text{F}$ is discharged through a high resistance. The	(d))
	time taken for half the charge of the capacitor to leak is 10 S. Find the value of	•
	resistance.	
	resistance. BMSCW at a conscitor of 0.5 to 5 are	()
13.	A coil of resistance 200 Ω , an inductance 0.75 Hand a capacitor of 0.5 μ F are	()
	connected in series with 220 V - 50 Hz mains. Calculate the impedance of the	()
		()
		()
14.	Calculate neutral temperature, temperature of inversion of a thermocouple	()
	between 0°C and 100°C for which seeback coefficients are a = 13.4 μ V/°C and	()
	$b = -0.02 \mu V/^{\circ}C^{2}$	\ \ /
		()
	DART C	()
	PART-C	()
		()
Ar	swer any five of the following. (5×2:	=10) ()
		()
15.	a) Static magnetic fields cannot change the kinetic energy of moving charge.	()
	Explain.	
	b) The moment of inertia of the suspension in BG is made large. Why?	()
		(1
		()

- c) What is the physical significance of the equation $\overrightarrow{\nabla}$. $\overrightarrow{B} = 0$?
- d) A bar magnet is dropped along the axis of a solenoid placed with its axis vertical. Does it fall with an acceleration equal to g? Explain.
- e) When does an LCR get critically damped?
- f) Does thermo-electric effect obey the law of conservation of energy? Explain.
- g) What is average power dissipated by pure inductor?
- h) Animals curl their body when they feel cold. Explain.

£ 1 () 1 work / () () () () () <u>(</u>) # 1 BMSCW () 64 £) () The I () 1 () () () () () *()* () () €) { } () () () ()